Физика

Программа по физике на уровне основного общего образования составлена на основе положений и требований к результатам освоения на базовом уровне основной образовательной программы, представленных в ФГОС ООО, а также с учётом федеральной рабочей программы воспитания и Концепции преподавания учебного предмета «Физика».

Содержание программы по физике направлено на формирование естественно­научной грамотности обучающихся и организацию изучения физики на деятельностной основе. В программе по физике учитываются возможности учебного предмета в реализации требований ФГОС ООО к планируемым личностным и метапредметным результатам обучения, а также межпредметные связи естественно­научных учебных предметов на уровне основного общего образования.

Одна из главных задач физического образования в структуре общего образования состоит в формировании естественно­научной грамотности и интереса к науке у обучающихся.

Цели изучения физики на уровне основного общего образования определены в Концепции преподавания учебного предмета «Физика» в образовательных организациях Российской Федерации, реализующих основные общеобразовательные программы, утверждённой решением Коллегии Министерства просвещения Российской Федерации (протокол от 3 декабря 2019 г. № ПК­4вн).

Цели изучения физики:

·         приобретение интереса и стремления обучающихся к научному изучению природы, развитие их интеллектуальных и творческих способностей;

·         развитие представлений о научном методе познания и формирование исследовательского отношения к окружающим явлениям;

·         формирование научного мировоззрения как результата изучения основ строения материи и фундаментальных законов физики;

·         формирование представлений о роли физики для развития других естественных наук, техники и технологий;

·         развитие представлений о возможных сферах будущей профессиональной деятельности, связанной с физикой, подготовка к дальнейшему обучению в этом направлении.

Достижение этих целей программы по физике на уровне основного общего образования обеспечивается решением следующих задач:

·         приобретение знаний о дискретном строении вещества, о механических, тепловых, электрических, магнитных и квантовых явлениях;

·         приобретение умений описывать и объяснять физические явления с использованием полученных знаний;

·         освоение методов решения простейших расчётных задач с использованием физических моделей, творческих и практико­ориентированных задач;

·         развитие умений наблюдать природные явления и выполнять опыты, лабораторные работы и экспериментальные исследования с использованием измерительных приборов;

·         освоение приёмов работы с информацией физического содержания, включая информацию о современных достижениях физики, анализ и критическое оценивание информации;

·         знакомство со сферами профессиональной деятельности, связанными с физикой, и современными технологиями, основанными на достижениях физической науки.

‌ На изучение физики (базовый уровень) на уровне основного общего образования отводится 238 часов: в 7 классе – 68 часов (2 часа в неделю), в 8 классе – 68 часов (2 часа в неделю), в 9 классе – 102 часа (3 часа в неделю).
‌‌‌

Предлагаемый в программе по физике перечень лабораторных работ и опытов носит рекомендательный характер, учитель делает выбор проведения лабораторных работ и опытов с учётом индивидуальных особенностей обучающихся, списка экспериментальных заданий, предлагаемых в рамках основного государственного экзамена по физике.

Программа по физике базового уровня на уровне среднего общего образования разработана на основе положений и требований к результатам освоения основной образовательной программы, представленных в ФГОС СОО, а также с учётом федеральной рабочей программы воспитания и концепции преподавания учебного предмета «Физика» в образовательных организациях Российской Федерации, реализующих основные образовательные программы.

Содержание программы по физике направлено на формирование естественно-научной картины мира обучающихся 10–11 классов при обучении их физике на базовом уровне на основе системно-деятельностного подхода. Программа по физике соответствует требованиям ФГОС СОО к планируемым личностным, предметным и метапредметным результатам обучения, а также учитывает необходимость реализации межпредметных связей физики с естественно-научными учебными предметами. В ней определяются основные цели изучения физики на уровне среднего общего образования, планируемые результаты освоения курса физики: личностные, метапредметные, предметные (на базовом уровне).

Основными целями изучения физики в общем образовании являются:

·         формирование интереса и стремления обучающихся к научному изучению природы, развитие их интеллектуальных и творческих способностей;

·         развитие представлений о научном методе познания и формирование исследовательского отношения к окружающим явлениям;

·         формирование научного мировоззрения как результата изучения основ строения материи и фундаментальных законов физики;

·         формирование умений объяснять явления с использованием физических знаний и научных доказательств;

·         формирование представлений о роли физики для развития других естественных наук, техники и технологий.

Достижение этих целей обеспечивается решением следующих задач в процессе изучения курса физики на уровне среднего общего образования:

·         приобретение системы знаний об общих физических закономерностях, законах, теориях, включая механику, молекулярную физику, электродинамику, квантовую физику и элементы астрофизики;

·         формирование умений применять теоретические знания для объяснения физических явлений в природе и для принятия практических решений в повседневной жизни;

·         освоение способов решения различных задач с явно заданной физической моделью, задач, подразумевающих самостоятельное создание физической модели, адекватной условиям задачи;

·         понимание физических основ и принципов действия технических устройств и технологических процессов, их влияния на окружающую среду;

·         овладение методами самостоятельного планирования и проведения физических экспериментов, анализа и интерпретации информации, определения достоверности полученного результата;

·         создание условий для развития умений проектно-исследовательской, творческой деятельности.

На изучение физики (базовый уровень) на уровне среднего общего образования отводится 136 часов: в 10 классе – 68 часов (2 часа в неделю), в 11 классе – 68 часов (2 часа в неделю).‌‌

СОДЕРЖАНИЕ ОБУЧЕНИЯ

 

7 КЛАСС

 

Раздел 1. Физика и её роль в познании окружающего мира.

Физика – наука о природе. Явления природы. Физические явления: механические, тепловые, электрические, магнитные, световые, звуковые.

Физические величины. Измерение физических величин. Физические приборы. Погрешность измерений. Международная система единиц.

Как физика и другие естественные науки изучают природу. Естественно­научный метод познания: наблюдение, постановка научного вопроса, выдвижение гипотез, эксперимент по проверке гипотез, объяснение наблюдаемого явления. Описание физических явлений с помощью моделей.

Демонстрации.

1.       Механические, тепловые, электрические, магнитные, световые явления.

2.       Физические приборы и процедура прямых измерений аналоговым и цифровым прибором.

Лабораторные работы и опыты.

1.       Определение цены деления шкалы измерительного прибора.

2.       Измерение расстояний.

3.       Измерение объёма жидкости и твёрдого тела.

4.       Определение размеров малых тел.

5.       Измерение температуры при помощи жидкостного термометра и датчика температуры.

6.       Проведение исследования по проверке гипотезы: дальность полёта шарика, пущенного горизонтально, тем больше, чем больше высота пуска.

Раздел 2. Первоначальные сведения о строении вещества.

Строение вещества: атомы и молекулы, их размеры. Опыты, доказывающие дискретное строение вещества.

Движение частиц вещества. Связь скорости движения частиц с температурой. Броуновское движение, диффузия. Взаимодействие частиц вещества: притяжение и отталкивание.

Агрегатные состояния вещества: строение газов, жидкостей и твёрдых (кристаллических) тел. Взаимосвязь между свойствами веществ в разных агрегатных состояниях и их атомно­молекулярным строением. Особенности агрегатных состояний воды.

Демонстрации.

1.       Наблюдение броуновского движения.

2.       Наблюдение диффузии.

3.       Наблюдение явлений, объясняющихся притяжением или отталкиванием частиц вещества.

Лабораторные работы и опыты.

1.       Оценка диаметра атома методом рядов (с использованием фотографий).

2.       Опыты по наблюдению теплового расширения газов.

3.       Опыты по обнаружению действия сил молекулярного притяжения.

Раздел 3. Движение и взаимодействие тел.

Механическое движение. Равномерное и неравномерное движение. Скорость. Средняя скорость при неравномерном движении. Расчёт пути и времени движения.

Явление инерции. Закон инерции. Взаимодействие тел как причина изменения скорости движения тел. Масса как мера инертности тела. Плотность вещества. Связь плотности с количеством молекул в единице объёма вещества.

Сила как характеристика взаимодействия тел. Сила упругости и закон Гука. Измерение силы с помощью динамометра. Явление тяготения и сила тяжести. Сила тяжести на других планетах. Вес тела. Невесомость. Сложение сил, направленных по одной прямой. Равнодействующая сил. Сила трения. Трение скольжения и трение покоя. Трение в природе и технике.

Демонстрации.

1.       Наблюдение механического движения тела.

2.       Измерение скорости прямолинейного движения.

3.       Наблюдение явления инерции.

4.       Наблюдение изменения скорости при взаимодействии тел.

5.       Сравнение масс по взаимодействию тел.

6.       Сложение сил, направленных по одной прямой.

Лабораторные работы и опыты.

1.       Определение скорости равномерного движения (шарика в жидкости, модели электрического автомобиля и так далее).

2.       Определение средней скорости скольжения бруска или шарика по наклонной плоскости.

3.       Определение плотности твёрдого тела.

4.       Опыты, демонстрирующие зависимость растяжения (деформации) пружины от приложенной силы.

5.       Опыты, демонстрирующие зависимость силы трения скольжения от веса тела и характера соприкасающихся поверхностей.

Раздел 4. Давление твёрдых тел, жидкостей и газов.

Давление. Способы уменьшения и увеличения давления. Давление газа. Зависимость давления газа от объёма, температуры. Передача давления твёрдыми телами, жидкостями и газами. Закон Паскаля. Пневматические машины. Зависимость давления жидкости от глубины. Гидростатический парадокс. Сообщающиеся сосуды. Гидравлические механизмы.

Атмосфера Земли и атмосферное давление. Причины существования воздушной оболочки Земли. Опыт Торричелли. Измерение атмосферного давления. Зависимость атмосферного давления от высоты над уровнем моря. Приборы для измерения атмосферного давления.

Действие жидкости и газа на погружённое в них тело. Выталкивающая (архимедова) сила. Закон Архимеда. Плавание тел. Воздухоплавание.

Демонстрации.

1.       Зависимость давления газа от температуры.

2.       Передача давления жидкостью и газом.

3.       Сообщающиеся сосуды.

4.       Гидравлический пресс.

5.       Проявление действия атмосферного давления.

6.       Зависимость выталкивающей силы от объёма погружённой части тела и плотности жидкости.

7.       Равенство выталкивающей силы весу вытесненной жидкости.

8.       Условие плавания тел: плавание или погружение тел в зависимости от соотношения плотностей тела и жидкости.

Лабораторные работы и опыты.

1.       Исследование зависимости веса тела в воде от объёма погружённой в жидкость части тела.

2.       Определение выталкивающей силы, действующей на тело, погружённое в жидкость.

3.       Проверка независимости выталкивающей силы, действующей на тело в жидкости, от массы тела.

4.       Опыты, демонстрирующие зависимость выталкивающей силы, действующей на тело в жидкости, от объёма погружённой в жидкость части тела и от плотности жидкости.

5.       Конструирование ареометра или конструирование лодки и определение её грузоподъёмности.

Раздел 5. Работа и мощность. Энергия.

Механическая работа. Мощность.

Простые механизмы: рычаг, блок, наклонная плоскость. Правило равновесия рычага. Применение правила равновесия рычага к блоку. «Золотое правило» механики. КПД простых механизмов. Простые механизмы в быту и технике.

Механическая энергия. Кинетическая и потенциальная энергия. Превращение одного вида механической энергии в другой. Закон сохранения энергии в механике.

Демонстрации.

1.       Примеры простых механизмов.

Лабораторные работы и опыты.

1.       Определение работы силы трения при равномерном движении тела по горизонтальной поверхности.

2.       Исследование условий равновесия рычага.

3.       Измерение КПД наклонной плоскости.

4.       Изучение закона сохранения механической энергии.

8 КЛАСС

 

Раздел 6. Тепловые явления.

Основные положения молекулярно-­кинетической теории строения вещества. Масса и размеры атомов и молекул. Опыты, подтверждающие основные положения молекулярно­кинетической теории.

Модели твёрдого, жидкого и газообразного состояний вещества. Кристаллические и аморфные тела. Объяснение свойств газов, жидкостей и твёрдых тел на основе положений молекулярно-­кинетической теории. Смачивание и капиллярные явления. Тепловое расширение и сжатие.

Температура. Связь температуры со скоростью теплового движения частиц. Внутренняя энергия. Способы изменения внутренней энергии: теплопередача и совершение работы. Виды теплопередачи: теплопроводность, конвекция, излучение.

Количество теплоты. Удельная теплоёмкость вещества. Теплообмен и тепловое равновесие. Уравнение теплового баланса. Плавление и отвердевание кристаллических веществ. Удельная теплота плавления. Парообразование и конденсация. Испарение. Кипение. Удельная теплота парообразования. Зависимость температуры кипения от атмосферного давления.

Влажность воздуха.

Энергия топлива. Удельная теплота сгорания.

Принципы работы тепловых двигателей КПД теплового двигателя. Тепловые двигатели и защита окружающей среды.

Закон сохранения и превращения энергии в тепловых процессах.

Демонстрации.

1.       Наблюдение броуновского движения.

2.       Наблюдение диффузии.

3.       Наблюдение явлений смачивания и капиллярных явлений.

4.       Наблюдение теплового расширения тел.

5.       Изменение давления газа при изменении объёма и нагревании или охлаждении.

6.       Правила измерения температуры.

7.       Виды теплопередачи.

8.       Охлаждение при совершении работы.

9.       Нагревание при совершении работы внешними силами.

10.   Сравнение теплоёмкостей различных веществ.

11.   Наблюдение кипения.

12.   Наблюдение постоянства температуры при плавлении.

13.   Модели тепловых двигателей.

Лабораторные работы и опыты.

1.       Опыты по обнаружению действия сил молекулярного притяжения.

2.       Опыты по выращиванию кристаллов поваренной соли или сахара.

3.       Опыты по наблюдению теплового расширения газов, жидкостей и твёрдых тел.

4.       Определение давления воздуха в баллоне шприца.

5.       Опыты, демонстрирующие зависимость давления воздуха от его объёма и нагревания или охлаждения.

6.       Проверка гипотезы линейной зависимости длины столбика жидкости в термометрической трубке от температуры.

7.       Наблюдение изменения внутренней энергии тела в результате теплопередачи и работы внешних сил.

8.       Исследование явления теплообмена при смешивании холодной и горячей воды.

9.       Определение количества теплоты, полученного водой при теплообмене с нагретым металлическим цилиндром.

10.   Определение удельной теплоёмкости вещества.

11.   Исследование процесса испарения.

12.   Определение относительной влажности воздуха.

13.   Определение удельной теплоты плавления льда.

Раздел 7. Электрические и магнитные явления.

Электризация тел. Два рода электрических зарядов. Взаимодействие заряженных тел. Закон Кулона (зависимость силы взаимодействия заряженных тел от величины зарядов и расстояния между телами).

Электрическое поле. Напряжённость электрического поля. Принцип суперпозиции электрических полей (на качественном уровне).

Носители электрических зарядов. Элементарный электрический заряд. Строение атома. Проводники и диэлектрики. Закон сохранения электрического заряда.

Электрический ток. Условия существования электрического тока. Источники постоянного тока. Действия электрического тока (тепловое, химическое, магнитное). Электрический ток в жидкостях и газах.

Электрическая цепь. Сила тока. Электрическое напряжение. Сопротивление проводника. Удельное сопротивление вещества. Закон Ома для участка цепи. Последовательное и параллельное соединение проводников.

Работа и мощность электрического тока. Закон Джоуля–Ленца. Электрические цепи и потребители электрической энергии в быту. Короткое замыкание.

Постоянные магниты. Взаимодействие постоянных магнитов. Магнитное поле. Магнитное поле Земли и его значение для жизни на Земле. Опыт Эрстеда. Магнитное поле электрического тока. Применение электромагнитов в технике. Действие магнитного поля на проводник с током. Электродвигатель постоянного тока. Использование электродвигателей в технических устройствах и на транспорте.

Опыты Фарадея. Явление электромагнитной индукции. Правило Ленца. Электрогенератор. Способы получения электрической энергии. Электростанции на возобновляемых источниках энергии.

Демонстрации.

1.       Электризация тел.

2.       Два рода электрических зарядов и взаимодействие заряженных тел.

3.       Устройство и действие электроскопа.

4.       Электростатическая индукция.

5.       Закон сохранения электрических зарядов.

6.       Проводники и диэлектрики.

7.       Моделирование силовых линий электрического поля.

8.       Источники постоянного тока.

9.       Действия электрического тока.

10.   Электрический ток в жидкости.

11.   Газовый разряд.

12.   Измерение силы тока амперметром.

13.   Измерение электрического напряжения вольтметром.

14.   Реостат и магазин сопротивлений.

15.   Взаимодействие постоянных магнитов.

16.   Моделирование невозможности разделения полюсов магнита.

17.   Моделирование магнитных полей постоянных магнитов.

18.   Опыт Эрстеда.

19.   Магнитное поле тока. Электромагнит.

20.   Действие магнитного поля на проводник с током.

21.   Электродвигатель постоянного тока.

22.   Исследование явления электромагнитной индукции.

23.   Опыты Фарадея.

24.   Зависимость направления индукционного тока от условий его возникновения.

25.   Электрогенератор постоянного тока.

Лабораторные работы и опыты.

1.       Опыты по наблюдению электризации тел индукцией и при соприкосновении.

2.       Исследование действия электрического поля на проводники и диэлектрики.

3.       Сборка и проверка работы электрической цепи постоянного тока.

4.       Измерение и регулирование силы тока.

5.       Измерение и регулирование напряжения.

6.       Исследование зависимости силы тока, идущего через резистор, от сопротивления резистора и напряжения на резисторе.

7.       Опыты, демонстрирующие зависимость электрического сопротивления проводника от его длины, площади поперечного сечения и материала.

8.       Проверка правила сложения напряжений при последовательном соединении двух резисторов.

9.       Проверка правила для силы тока при параллельном соединении резисторов.

10.   Определение работы электрического тока, идущего через резистор.

11.   Определение мощности электрического тока, выделяемой на резисторе.

12.   Исследование зависимости силы тока, идущего через лампочку, от напряжения на ней.

13.   Определение КПД нагревателя.

14.   Исследование магнитного взаимодействия постоянных магнитов.

15.   Изучение магнитного поля постоянных магнитов при их объединении и разделении.

16.   Исследование действия электрического тока на магнитную стрелку.

17.   Опыты, демонстрирующие зависимость силы взаимодействия катушки с током и магнита от силы тока и направления тока в катушке.

18.   Изучение действия магнитного поля на проводник с током.

19.   Конструирование и изучение работы электродвигателя.

20.   Измерение КПД электродвигательной установки.

21.   Опыты по исследованию явления электромагнитной индукции: исследование изменений значения и направления индукционного тока.

9 КЛАСС

 

Раздел 8. Механические явления.

Механическое движение. Материальная точка. Система отсчёта. Относительность механического движения. Равномерное прямолинейное движение. Неравномерное прямолинейное движение. Средняя и мгновенная скорость тела при неравномерном движении.

Ускорение. Равноускоренное прямолинейное движение. Свободное падение. Опыты Галилея.

Равномерное движение по окружности. Период и частота обращения. Линейная и угловая скорости. Центростремительное ускорение.

Первый закон Ньютона. Второй закон Ньютона. Третий закон Ньютона. Принцип суперпозиции сил.

Сила упругости. Закон Гука. Сила трения: сила трения скольжения, сила трения покоя, другие виды трения.

Сила тяжести и закон всемирного тяготения. Ускорение свободного падения. Движение планет вокруг Солнца. Первая космическая скорость. Невесомость и перегрузки.

Равновесие материальной точки. Абсолютно твёрдое тело. Равновесие твёрдого тела с закреплённой осью вращения. Момент силы. Центр тяжести.

Импульс тела. Изменение импульса. Импульс силы. Закон сохранения импульса. Реактивное движение.

Механическая работа и мощность. Работа сил тяжести, упругости, трения. Связь энергии и работы. Потенциальная энергия тела, поднятого над поверхностью земли. Потенциальная энергия сжатой пружины. Кинетическая энергия. Теорема о кинетической энергии. Закон сохранения механической энергии.

Демонстрации.

1.       Наблюдение механического движения тела относительно разных тел отсчёта.

2.       Сравнение путей и траекторий движения одного и того же тела относительно разных тел отсчёта.

3.       Измерение скорости и ускорения прямолинейного движения.

4.       Исследование признаков равноускоренного движения.

5.       Наблюдение движения тела по окружности.

6.       Наблюдение механических явлений, происходящих в системе отсчёта «Тележка» при её равномерном и ускоренном движении относительно кабинета физики.

7.       Зависимость ускорения тела от массы тела и действующей на него силы.

8.       Наблюдение равенства сил при взаимодействии тел.

9.       Изменение веса тела при ускоренном движении.

10.   Передача импульса при взаимодействии тел.

11.   Преобразования энергии при взаимодействии тел.

12.   Сохранение импульса при неупругом взаимодействии.

13.   Сохранение импульса при абсолютно упругом взаимодействии.

14.   Наблюдение реактивного движения.

15.   Сохранение механической энергии при свободном падении.

16.   Сохранение механической энергии при движении тела под действием пружины.

Лабораторные работы и опыты.

1.       Конструирование тракта для разгона и дальнейшего равномерного движения шарика или тележки.

2.       Определение средней скорости скольжения бруска или движения шарика по наклонной плоскости.

3.       Определение ускорения тела при равноускоренном движении по наклонной плоскости.

4.       Исследование зависимости пути от времени при равноускоренном движении без начальной скорости.

5.       Проверка гипотезы: если при равноускоренном движении без начальной скорости пути относятся как ряд нечётных чисел, то соответствующие промежутки времени одинаковы.

6.       Исследование зависимости силы трения скольжения от силы нормального давления.

7.       Определение коэффициента трения скольжения.

8.       Определение жёсткости пружины.

9.       Определение работы силы трения при равномерном движении тела по горизонтальной поверхности.

10.   Определение работы силы упругости при подъёме груза с использованием неподвижного и подвижного блоков.

11.   Изучение закона сохранения энергии.

Раздел 9. Механические колебания и волны.

Колебательное движение. Основные характеристики колебаний: период, частота, амплитуда. Математический и пружинный маятники. Превращение энергии при колебательном движении.

Затухающие колебания. Вынужденные колебания. Резонанс. Механические волны. Свойства механических волн. Продольные и поперечные волны. Длина волны и скорость её распространения. Механические волны в твёрдом теле, сейсмические волны.

Звук. Громкость звука и высота тона. Отражение звука. Инфразвук и ультразвук.

Демонстрации.

1.       Наблюдение колебаний тел под действием силы тяжести и силы упругости.

2.       Наблюдение колебаний груза на нити и на пружине.

3.       Наблюдение вынужденных колебаний и резонанса.

4.       Распространение продольных и поперечных волн (на модели).

5.       Наблюдение зависимости высоты звука от частоты.

6.       Акустический резонанс.

Лабораторные работы и опыты.

1.       Определение частоты и периода колебаний математического маятника.

2.       Определение частоты и периода колебаний пружинного маятника.

3.       Исследование зависимости периода колебаний подвешенного к нити груза от длины нити.

4.       Исследование зависимости периода колебаний пружинного маятника от массы груза.

5.       Проверка независимости периода колебаний груза, подвешенного к нити, от массы груза.

6.       Опыты, демонстрирующие зависимость периода колебаний пружинного маятника от массы груза и жёсткости пружины.

7.       Измерение ускорения свободного падения.

Раздел 10. Электромагнитное поле и электромагнитные волны.

Электромагнитное поле. Электромагнитные волны. Свойства электромагнитных волн. Шкала электромагнитных волн. Использование электромагнитных волн для сотовой связи.

Электромагнитная природа света. Скорость света. Волновые свойства света.

Демонстрации.

1.       Свойства электромагнитных волн.

2.       Волновые свойства света.

Лабораторные работы и опыты.

1.       Изучение свойств электромагнитных волн с помощью мобильного телефона.

Раздел 11. Световые явления.

Лучевая модель света. Источники света. Прямолинейное распространение света. Затмения Солнца и Луны. Отражение света. Плоское зеркало. Закон отражения света.

Преломление света. Закон преломления света. Полное внутреннее отражение света. Использование полного внутреннего отражения в оптических световодах.

Линза. Ход лучей в линзе. Оптическая система фотоаппарата, микроскопа и телескопа. Глаз как оптическая система. Близорукость и дальнозоркость.

Разложение белого света в спектр. Опыты Ньютона. Сложение спектральных цветов. Дисперсия света.

Демонстрации.

1.       Прямолинейное распространение света.

2.       Отражение света.

3.       Получение изображений в плоском, вогнутом и выпуклом зеркалах.

4.       Преломление света.

5.       Оптический световод.

6.       Ход лучей в собирающей линзе.

7.       Ход лучей в рассеивающей линзе.

8.       Получение изображений с помощью линз.

9.       Принцип действия фотоаппарата, микроскопа и телескопа.

10.   Модель глаза.

11.   Разложение белого света в спектр.

12.   Получение белого света при сложении света разных цветов.

Лабораторные работы и опыты.

1.       Исследование зависимости угла отражения светового луча от угла падения.

2.       Изучение характеристик изображения предмета в плоском зеркале.

3.       Исследование зависимости угла преломления светового луча от угла падения на границе «воздух–стекло».

4.       Получение изображений с помощью собирающей линзы.

5.       Определение фокусного расстояния и оптической силы собирающей линзы.

6.       Опыты по разложению белого света в спектр.

7.       Опыты по восприятию цвета предметов при их наблюдении через цветовые фильтры.

Раздел 12. Квантовые явления.

Опыты Резерфорда и планетарная модель атома. Модель атома Бора. Испускание и поглощение света атомом. Кванты. Линейчатые спектры.

Радиоактивность. Альфа­, бета- и гамма-излучения. Строение атомного ядра. Нуклонная модель атомного ядра. Изотопы. Радиоактивные превращения. Период полураспада атомных ядер.

Ядерные реакции. Законы сохранения зарядового и массового чисел. Энергия связи атомных ядер. Связь массы и энергии. Реакции синтеза и деления ядер. Источники энергии Солнца и звёзд.

Ядерная энергетика. Действия радиоактивных излучений на живые организмы.

Демонстрации.

1.       Спектры излучения и поглощения.

2.       Спектры различных газов.

3.       Спектр водорода.

4.       Наблюдение треков в камере Вильсона.

5.       Работа счётчика ионизирующих излучений.

6.       Регистрация излучения природных минералов и продуктов.

Лабораторные работы и опыты.

1.       Наблюдение сплошных и линейчатых спектров излучения.

2.       Исследование треков: измерение энергии частицы по тормозному пути (по фотографиям).

3.       Измерение радиоактивного фона.

Повторительно-обобщающий модуль.

Повторительно-­обобщающий модуль предназначен для систематизации и обобщения предметного содержания и опыта деятельности, приобретённого при изучении всего курса физики, а также для подготовки к основному государственному экзамену по физике для обучающихся, выбравших этот учебный предмет.

При изучении данного модуля реализуются и систематизируются виды деятельности, на основе которых обеспечивается достижение предметных и метапредметных планируемых результатов обучения, формируется естественнонаучная грамотность: освоение научных методов исследования явлений природы и техники, овладение умениями объяснять физические явления, применяя полученные знания, решать задачи, в том числе качественные и экспериментальные.

Принципиально деятельностный характер данного раздела реализуется за счёт того, что обучающиеся выполняют задания, в которых им предлагается:

на основе полученных знаний распознавать и научно объяснять физические явления в окружающей природе и повседневной жизни;

использовать научные методы исследования физических явлений, в том числе для проверки гипотез и получения теоретических выводов;

объяснять научные основы наиболее важных достижений современных технологий, например, практического использования различных источников энергии на основе закона превращения и сохранения всех известных видов энергии.

Хочу такой сайт

10 КЛАСС

 

Раздел 1. Физика и методы научного познания

Физика – наука о природе. Научные методы познания окружающего мира. Роль эксперимента и теории в процессе познания природы. Эксперимент в физике.

Моделирование физических явлений и процессов. Научные гипотезы. Физические законы и теории. Границы применимости физических законов. Принцип соответствия.

Роль и место физики в формировании современной научной картины мира, в практической деятельности людей.

Демонстрации

Аналоговые и цифровые измерительные приборы, компьютерные датчики.

 

Раздел 2. Механика

Тема 1. Кинематика

Механическое движение. Относительность механического движения. Система отсчёта. Траектория.

Перемещение, скорость (средняя скорость, мгновенная скорость) и ускорение материальной точки, их проекции на оси системы координат. Сложение перемещений и сложение скоростей.

Равномерное и равноускоренное прямолинейное движение. Графики зависимости координат, скорости, ускорения, пути и перемещения материальной точки от времени.

Свободное падение. Ускорение свободного падения.

Криволинейное движение. Движение материальной точки по окружности с постоянной по модулю скоростью. Угловая скорость, линейная скорость. Период и частота обращения. Центростремительное ускорение.

Технические устройства и практическое применение: спидометр, движение снарядов, цепные и ремённые передачи.

Демонстрации

Модель системы отсчёта, иллюстрация кинематических характеристик движения.

Преобразование движений с использованием простых механизмов.

Падение тел в воздухе и в разреженном пространстве.

Наблюдение движения тела, брошенного под углом к горизонту и горизонтально.

Измерение ускорения свободного падения.

Направление скорости при движении по окружности.

Ученический эксперимент, лабораторные работы

Изучение неравномерного движения с целью определения мгновенной скорости.

Исследование соотношения между путями, пройденными телом за последовательные равные промежутки времени при равноускоренном движении с начальной скоростью, равной нулю.

Изучение движения шарика в вязкой жидкости.

Изучение движения тела, брошенного горизонтально.

Тема 2. Динамика

Принцип относительности Галилея. Первый закон Ньютона. Инерциальные системы отсчёта.

Масса тела. Сила. Принцип суперпозиции сил. Второй закон Ньютона для материальной точки. Третий закон Ньютона для материальных точек.

Закон всемирного тяготения. Сила тяжести. Первая космическая скорость.

Сила упругости. Закон Гука. Вес тела.

Трение. Виды трения (покоя, скольжения, качения). Сила трения. Сухое трение. Сила трения скольжения и сила трения покоя. Коэффициент трения. Сила сопротивления при движении тела в жидкости или газе.

Поступательное и вращательное движение абсолютно твёрдого тела.

Момент силы относительно оси вращения. Плечо силы. Условия равновесия твёрдого тела.

Технические устройства и практическое применение: подшипники, движение искусственных спутников.

Демонстрации

Явление инерции.

Сравнение масс взаимодействующих тел.

Второй закон Ньютона.

Измерение сил.

Сложение сил.

Зависимость силы упругости от деформации.

Невесомость. Вес тела при ускоренном подъёме и падении.

Сравнение сил трения покоя, качения и скольжения.

Условия равновесия твёрдого тела. Виды равновесия.

Ученический эксперимент, лабораторные работы

Изучение движения бруска по наклонной плоскости.

Исследование зависимости сил упругости, возникающих в пружине и резиновом образце, от их деформации.

Исследование условий равновесия твёрдого тела, имеющего ось вращения.

Тема 3. Законы сохранения в механике

Импульс материальной точки (тела), системы материальных точек. Импульс силы и изменение импульса тела. Закон сохранения импульса. Реактивное движение.

Работа силы. Мощность силы.

Кинетическая энергия материальной точки. Теорема об изменении кинетической энергии.

Потенциальная энергия. Потенциальная энергия упруго деформированной пружины. Потенциальная энергия тела вблизи поверхности Земли.

Потенциальные и непотенциальные силы. Связь работы непотенциальных сил с изменением механической энергии системы тел. Закон сохранения механической энергии.

Упругие и неупругие столкновения.

Технические устройства и практическое применение: водомёт, копёр, пружинный пистолет, движение ракет.

Демонстрации

Закон сохранения импульса.

Реактивное движение.

Переход потенциальной энергии в кинетическую и обратно.

Ученический эксперимент, лабораторные работы

Изучение абсолютно неупругого удара с помощью двух одинаковых нитяных маятников.

Исследование связи работы силы с изменением механической энергии тела на примере растяжения резинового жгута.

 

Раздел 3. Молекулярная физика и термодинамика

Тема 1. Основы молекулярно-кинетической теории

Основные положения молекулярно-кинетической теории и их опытное обоснование. Броуновское движение. Диффузия. Характер движения и взаимодействия частиц вещества. Модели строения газов, жидкостей и твёрдых тел и объяснение свойств вещества на основе этих моделей. Масса и размеры молекул. Количество вещества. Постоянная Авогадро.

Тепловое равновесие. Температура и её измерение. Шкала температур Цельсия.

Модель идеального газа. Основное уравнение молекулярно-кинетической теории идеального газа. Абсолютная температура как мера средней кинетической энергии теплового движения частиц газа. Шкала температур Кельвина. Газовые законы. Уравнение Менделеева–Клапейрона. Закон Дальтона. Изопроцессы в идеальном газе с постоянным количеством вещества. Графическое представление изопроцессов: изотерма, изохора, изобара.

Технические устройства и практическое применение: термометр, барометр.

Демонстрации

Опыты, доказывающие дискретное строение вещества, фотографии молекул органических соединений.

Опыты по диффузии жидкостей и газов.

Модель броуновского движения.

Модель опыта Штерна.

Опыты, доказывающие существование межмолекулярного взаимодействия.

Модель, иллюстрирующая природу давления газа на стенки сосуда.

Опыты, иллюстрирующие уравнение состояния идеального газа, изопроцессы.

Ученический эксперимент, лабораторные работы

Определение массы воздуха в классной комнате на основе измерений объёма комнаты, давления и температуры воздуха в ней.

Исследование зависимости между параметрами состояния разреженного газа.

Тема 2. Основы термодинамики

Термодинамическая система. Внутренняя энергия термодинамической системы и способы её изменения. Количество теплоты и работа. Внутренняя энергия одноатомного идеального газа. Виды теплопередачи: теплопроводность, конвекция, излучение. Удельная теплоёмкость вещества. Количество теплоты при теплопередаче.

Понятие об адиабатном процессе. Первый закон термодинамики. Применение первого закона термодинамики к изопроцессам. Графическая интерпретация работы газа.

Второй закон термодинамики. Необратимость процессов в природе.

Тепловые машины. Принципы действия тепловых машин. Преобразования энергии в тепловых машинах. Коэффициент полезного действия тепловой машины. Цикл Карно и его коэффициент полезного действия. Экологические проблемы теплоэнергетики.

Технические устройства и практическое применение: двигатель внутреннего сгорания, бытовой холодильник, кондиционер.

Демонстрации

Изменение внутренней энергии тела при совершении работы: вылет пробки из бутылки под действием сжатого воздуха, нагревание эфира в латунной трубке путём трения (видеодемонстрация).

Изменение внутренней энергии (температуры) тела при теплопередаче.

Опыт по адиабатному расширению воздуха (опыт с воздушным огнивом).

Модели паровой турбины, двигателя внутреннего сгорания, реактивного двигателя.

Ученический эксперимент, лабораторные работы

Измерение удельной теплоёмкости.

Тема 3. Агрегатные состояния вещества. Фазовые переходы

Парообразование и конденсация. Испарение и кипение. Абсолютная и относительная влажность воздуха. Насыщенный пар. Удельная теплота парообразования. Зависимость температуры кипения от давления.

Твёрдое тело. Кристаллические и аморфные тела. Анизотропия свойств кристаллов. Жидкие кристаллы. Современные материалы. Плавление и кристаллизация. Удельная теплота плавления. Сублимация.

Уравнение теплового баланса.

Технические устройства и практическое применение: гигрометр и психрометр, калориметр, технологии получения современных материалов, в том числе наноматериалов, и нанотехнологии.

Демонстрации

Свойства насыщенных паров.

Кипение при пониженном давлении.

Способы измерения влажности.

Наблюдение нагревания и плавления кристаллического вещества.

Демонстрация кристаллов.

Ученический эксперимент, лабораторные работы

Измерение относительной влажности воздуха.

 

Раздел 4. Электродинамика

Тема 1. Электростатика

Электризация тел. Электрический заряд. Два вида электрических зарядов. Проводники, диэлектрики и полупроводники. Закон сохранения электрического заряда.

Взаимодействие зарядов. Закон Кулона. Точечный электрический заряд. Электрическое поле. Напряжённость электрического поля. Принцип суперпозиции электрических полей. Линии напряжённости электрического поля.

Работа сил электростатического поля. Потенциал. Разность потенциалов. Проводники и диэлектрики в электростатическом поле. Диэлектрическая проницаемость.

Электроёмкость. Конденсатор. Электроёмкость плоского конденсатора. Энергия заряженного конденсатора.

Технические устройства и практическое применение: электроскоп, электрометр, электростатическая защита, заземление электроприборов, конденсатор, копировальный аппарат, струйный принтер.

Демонстрации

Устройство и принцип действия электрометра.

Взаимодействие наэлектризованных тел.

Электрическое поле заряженных тел.

Проводники в электростатическом поле.

Электростатическая защита.

Диэлектрики в электростатическом поле.

Зависимость электроёмкости плоского конденсатора от площади пластин, расстояния между ними и диэлектрической проницаемости.

Энергия заряженного конденсатора.

Ученический эксперимент, лабораторные работы

Измерение электроёмкости конденсатора.

Тема 2. Постоянный электрический ток. Токи в различных средах

Электрический ток. Условия существования электрического тока. Источники тока. Сила тока. Постоянный ток.

Напряжение. Закон Ома для участка цепи.

Электрическое сопротивление. Удельное сопротивление вещества. Последовательное, параллельное, смешанное соединение проводников.

Работа электрического тока. Закон Джоуля–Ленца. Мощность электрического тока.

Электродвижущая сила и внутреннее сопротивление источника тока. Закон Ома для полной (замкнутой) электрической цепи. Короткое замыкание.

Электронная проводимость твёрдых металлов. Зависимость сопротивления металлов от температуры. Сверхпроводимость.

Электрический ток в вакууме. Свойства электронных пучков.

Полупроводники. Собственная и примесная проводимость полупроводников. Свойства pn-перехода. Полупроводниковые приборы.

Электрический ток в растворах и расплавах электролитов. Электролитическая диссоциация. Электролиз.

Электрический ток в газах. Самостоятельный и несамостоятельный разряд. Молния. Плазма.

Технические устройства и практическое применение: амперметр, вольтметр, реостат, источники тока, электронагревательные приборы, электроосветительные приборы, термометр сопротивления, вакуумный диод, термисторы и фоторезисторы, полупроводниковый диод, гальваника.

Демонстрации

Измерение силы тока и напряжения.

Зависимость сопротивления цилиндрических проводников от длины, площади поперечного сечения и материала.

Смешанное соединение проводников.

Прямое измерение электродвижущей силы. Короткое замыкание гальванического элемента и оценка внутреннего сопротивления.

Зависимость сопротивления металлов от температуры.

Проводимость электролитов.

Искровой разряд и проводимость воздуха.

Односторонняя проводимость диода.

Ученический эксперимент, лабораторные работы

Изучение смешанного соединения резисторов.

Измерение электродвижущей силы источника тока и его внутреннего сопротивления.

Наблюдение электролиза.

Межпредметные связи

Изучение курса физики базового уровня в 10 классе осуществляется с учётом содержательных межпредметных связей с курсами математики, биологии, химии, географии и технологии.

Межпредметные понятия, связанные с изучением методов научного познания: явление, научный факт, гипотеза, физическая величина, закон, теория, наблюдение, эксперимент, моделирование, модель, измерение.

Математика: решение системы уравнений, линейная функция, парабола, гипербола, их графики и свойства, тригонометрические функции: синус, косинус, тангенс, котангенс, основное тригонометрическое тождество, векторы и их проекции на оси координат, сложение векторов.

Биология: механическое движение в живой природе, диффузия, осмос, теплообмен живых организмов (виды теплопередачи, тепловое равновесие), электрические явления в живой природе.

Химия: дискретное строение вещества, строение атомов и молекул, моль вещества, молярная масса, тепловые свойства твёрдых тел, жидкостей и газов, электрические свойства металлов, электролитическая диссоциация, гальваника.

География: влажность воздуха, ветры, барометр, термометр.

Технология: преобразование движений с использованием механизмов, учёт трения в технике, подшипники, использование закона сохранения импульса в технике (ракета, водомёт и другие), двигатель внутреннего сгорания, паровая турбина, бытовой холодильник, кондиционер, технологии получения современных материалов, в том числе наноматериалов, и нанотехнологии, электростатическая защита, заземление электроприборов, ксерокс, струйный принтер, электронагревательные приборы, электроосветительные приборы, гальваника.

 

11 КЛАСС

 

Раздел 4. Электродинамика

Тема 3. Магнитное поле. Электромагнитная индукция

Постоянные магниты. Взаимодействие постоянных магнитов. Магнитное поле. Вектор магнитной индукции. Принцип суперпозиции магнитных полей. Линии магнитной индукции. Картина линий магнитной индукции поля постоянных магнитов.

Магнитное поле проводника с током. Картина линий индукции магнитного поля длинного прямого проводника и замкнутого кольцевого проводника, катушки с током. Опыт Эрстеда. Взаимодействие проводников с током.

Сила Ампера, её модуль и направление.

Сила Лоренца, её модуль и направление. Движение заряженной частицы в однородном магнитном поле. Работа силы Лоренца.

Явление электромагнитной индукции. Поток вектора магнитной индукции. Электродвижущая сила индукции. Закон электромагнитной индукции Фарадея.

Вихревое электрическое поле. Электродвижущая сила индукции в проводнике, движущемся поступательно в однородном магнитном поле.

Правило Ленца.

Индуктивность. Явление самоиндукции. Электродвижущая сила самоиндукции.

Энергия магнитного поля катушки с током.

Электромагнитное поле.

Технические устройства и практическое применение: постоянные магниты, электромагниты, электродвигатель, ускорители элементарных частиц, индукционная печь.

Демонстрации

Опыт Эрстеда.

Отклонение электронного пучка магнитным полем.

Линии индукции магнитного поля.

Взаимодействие двух проводников с током.

Сила Ампера.

Действие силы Лоренца на ионы электролита.

Явление электромагнитной индукции.

Правило Ленца.

Зависимость электродвижущей силы индукции от скорости изменения магнитного потока.

Явление самоиндукции.

Ученический эксперимент, лабораторные работы

Изучение магнитного поля катушки с током.

Исследование действия постоянного магнита на рамку с током.

Исследование явления электромагнитной индукции.

 

Раздел 5. Колебания и волны

Тема 1. Механические и электромагнитные колебания

Колебательная система. Свободные механические колебания. Гармонические колебания. Период, частота, амплитуда и фаза колебаний. Пружинный маятник. Математический маятник. Уравнение гармонических колебаний. Превращение энергии при гармонических колебаниях.

Колебательный контур. Свободные электромагнитные колебания в идеальном колебательном контуре. Аналогия между механическими и электромагнитными колебаниями. Формула Томсона. Закон сохранения энергии в идеальном колебательном контуре.

Представление о затухающих колебаниях. Вынужденные механические колебания. Резонанс. Вынужденные электромагнитные колебания.

Переменный ток. Синусоидальный переменный ток. Мощность переменного тока. Амплитудное и действующее значение силы тока и напряжения.

Трансформатор. Производство, передача и потребление электрической энергии. Экологические риски при производстве электроэнергии. Культура использования электроэнергии в повседневной жизни.

Технические устройства и практическое применение: электрический звонок, генератор переменного тока, линии электропередач.

Демонстрации

Исследование параметров колебательной системы (пружинный или математический маятник).

Наблюдение затухающих колебаний.

Исследование свойств вынужденных колебаний.

Наблюдение резонанса.

Свободные электромагнитные колебания.

Осциллограммы (зависимости силы тока и напряжения от времени) для электромагнитных колебаний.

Резонанс при последовательном соединении резистора, катушки индуктивности и конденсатора.

Модель линии электропередачи.

Ученический эксперимент, лабораторные работы

Исследование зависимости периода малых колебаний груза на нити от длины нити и массы груза.

Исследование переменного тока в цепи из последовательно соединённых конденсатора, катушки и резистора.

Тема 2. Механические и электромагнитные волны

Механические волны, условия распространения. Период. Скорость распространения и длина волны. Поперечные и продольные волны. Интерференция и дифракция механических волн.

Звук. Скорость звука. Громкость звука. Высота тона. Тембр звука.

Электромагнитные волны. Условия излучения электромагнитных волн. Взаимная ориентация векторов E, B, V в электромагнитной волне. Свойства электромагнитных волн: отражение, преломление, поляризация, дифракция, интерференция. Скорость электромагнитных волн.

Шкала электромагнитных волн. Применение электромагнитных волн в технике и быту.

Принципы радиосвязи и телевидения. Радиолокация.

Электромагнитное загрязнение окружающей среды.

Технические устройства и практическое применение: музыкальные инструменты, ультразвуковая диагностика в технике и медицине, радар, радиоприёмник, телевизор, антенна, телефон, СВЧ-печь.

Демонстрации

Образование и распространение поперечных и продольных волн.

Колеблющееся тело как источник звука.

Наблюдение отражения и преломления механических волн.

Наблюдение интерференции и дифракции механических волн.

Звуковой резонанс.

Наблюдение связи громкости звука и высоты тона с амплитудой и частотой колебаний.

Исследование свойств электромагнитных волн: отражение, преломление, поляризация, дифракция, интерференция.

Тема 3. Оптика

Геометрическая оптика. Прямолинейное распространение света в однородной среде. Луч света. Точечный источник света.

Отражение света. Законы отражения света. Построение изображений в плоском зеркале.

Преломление света. Законы преломления света. Абсолютный показатель преломления. Полное внутреннее отражение. Предельный угол полного внутреннего отражения.

Дисперсия света. Сложный состав белого света. Цвет.

Собирающие и рассеивающие линзы. Тонкая линза. Фокусное расстояние и оптическая сила тонкой линзы. Построение изображений в собирающих и рассеивающих линзах. Формула тонкой линзы. Увеличение, даваемое линзой.

Пределы применимости геометрической оптики.

Волновая оптика. Интерференция света. Когерентные источники. Условия наблюдения максимумов и минимумов в интерференционной картине от двух синфазных когерентных источников.

Дифракция света. Дифракционная решётка. Условие наблюдения главных максимумов при падении монохроматического света на дифракционную решётку.

Поляризация света.

Технические устройства и практическое применение: очки, лупа, фотоаппарат, проекционный аппарат, микроскоп, телескоп, волоконная оптика, дифракционная решётка, поляроид.

Демонстрации

Прямолинейное распространение, отражение и преломление света. Оптические приборы.

Полное внутреннее отражение. Модель световода.

Исследование свойств изображений в линзах.

Модели микроскопа, телескопа.

Наблюдение интерференции света.

Наблюдение дифракции света.

Наблюдение дисперсии света.

Получение спектра с помощью призмы.

Получение спектра с помощью дифракционной решётки.

Наблюдение поляризации света.

Ученический эксперимент, лабораторные работы

Измерение показателя преломления стекла.

Исследование свойств изображений в линзах.

Наблюдение дисперсии света.

 

Раздел 6. Основы специальной теории относительности

Границы применимости классической механики. Постулаты специальной теории относительности: инвариантность модуля скорости света в вакууме, принцип относительности Эйнштейна.

Относительность одновременности. Замедление времени и сокращение длины.

Энергия и импульс релятивистской частицы.

Связь массы с энергией и импульсом релятивистской частицы. Энергия покоя.

 

Раздел 7. Квантовая физика

Тема 1. Элементы квантовой оптики

Фотоны. Формула Планка связи энергии фотона с его частотой. Энергия и импульс фотона.

Открытие и исследование фотоэффекта. Опыты А. Г. Столетова. Законы фотоэффекта. Уравнение Эйнштейна для фотоэффекта. «Красная граница» фотоэффекта.

Давление света. Опыты П. Н. Лебедева.

Химическое действие света.

Технические устройства и практическое применение: фотоэлемент, фотодатчик, солнечная батарея, светодиод.

Демонстрации

Фотоэффект на установке с цинковой пластиной.

Исследование законов внешнего фотоэффекта.

Светодиод.

Солнечная батарея.

Тема 2. Строение атома

Модель атома Томсона. Опыты Резерфорда по рассеянию α -частиц. Планетарная модель атома. Постулаты Бора. Излучение и поглощение фотонов при переходе атома с одного уровня энергии на другой. Виды спектров. Спектр уровней энергии атома водорода.

Волновые свойства частиц. Волны де Бройля. Корпускулярно-волновой дуализм.

Спонтанное и вынужденное излучение.

Технические устройства и практическое применение: спектральный анализ (спектроскоп), лазер, квантовый компьютер.

Демонстрации

Модель опыта Резерфорда.

Определение длины волны лазера.

Наблюдение линейчатых спектров излучения.

Лазер.

Ученический эксперимент, лабораторные работы

Наблюдение линейчатого спектра.

Тема 3. Атомное ядро

Эксперименты, доказывающие сложность строения ядра. Открытие радиоактивности. Опыты Резерфорда по определению состава радиоактивного излучения. Свойства альфа-, бета-, гамма-излучения. Влияние радиоактивности на живые организмы.

Открытие протона и нейтрона. Нуклонная модель ядра Гейзенберга–Иваненко. Заряд ядра. Массовое число ядра. Изотопы.

Альфа-распад. Электронный и позитронный бета-распад. Гамма-излучение. Закон радиоактивного распада.

Энергия связи нуклонов в ядре. Ядерные силы. Дефект массы ядра.

Ядерные реакции. Деление и синтез ядер.

Ядерный реактор. Термоядерный синтез. Проблемы и перспективы ядерной энергетики. Экологические аспекты ядерной энергетики.

Элементарные частицы. Открытие позитрона.

Методы наблюдения и регистрации элементарных частиц.

Фундаментальные взаимодействия. Единство физической картины мира.

Технические устройства и практическое применение: дозиметр, камера Вильсона, ядерный реактор, атомная бомба.

Демонстрации

Счётчик ионизирующих частиц.

Ученический эксперимент, лабораторные работы

Исследование треков частиц (по готовым фотографиям).

 

Раздел 8. Элементы астрономии и астрофизики

Этапы развития астрономии. Прикладное и мировоззренческое значение астрономии.

Вид звёздного неба. Созвездия, яркие звёзды, планеты, их видимое движение.

Солнечная система.

Солнце. Солнечная активность. Источник энергии Солнца и звёзд. Звёзды, их основные характеристики. Диаграмма «спектральный класс – светимость». Звёзды главной последовательности. Зависимость «масса – светимость» для звёзд главной последовательности. Внутреннее строение звёзд. Современные представления о происхождении и эволюции Солнца и звёзд. Этапы жизни звёзд.

Млечный Путь – наша Галактика. Положение и движение Солнца в Галактике. Типы галактик. Радиогалактики и квазары. Чёрные дыры в ядрах галактик.

Вселенная. Расширение Вселенной. Закон Хаббла. Разбегание галактик. Теория Большого взрыва. Реликтовое излучение.

Масштабная структура Вселенной. Метагалактика.

Нерешённые проблемы астрономии.

Ученические наблюдения

Наблюдения невооружённым глазом с использованием компьютерных приложений для определения положения небесных объектов на конкретную дату: основные созвездия Северного полушария и яркие звёзды.

Наблюдения в телескоп Луны, планет, Млечного Пути.

Обобщающее повторение

Роль физики и астрономии в экономической, технологической, социальной и этической сферах деятельности человека, роль и место физики и астрономии в современной научной картине мира, роль физической теории в формировании представлений о физической картине мира, место физической картины мира в общем ряду современных естественно-научных представлений о природе.

Межпредметные связи

Изучение курса физики базового уровня в 11 классе осуществляется с учётом содержательных межпредметных связей с курсами математики, биологии, химии, географии и технологии.

Межпредметные понятия, связанные с изучением методов научного познания: явление, научный факт, гипотеза, физическая величина, закон, теория, наблюдение, эксперимент, моделирование, модель, измерение.

Математика: решение системы уравнений, тригонометрические функции: синус, косинус, тангенс, котангенс, основное тригонометрическое тождество, векторы и их проекции на оси координат, сложение векторов, производные элементарных функций, признаки подобия треугольников, определение площади плоских фигур и объёма тел.

Биология: электрические явления в живой природе, колебательные движения в живой природе, оптические явления в живой природе, действие радиации на живые организмы.

Химия: строение атомов и молекул, кристаллическая структура твёрдых тел, механизмы образования кристаллической решётки, спектральный анализ.

География: магнитные полюса Земли, залежи магнитных руд, фотосъёмка земной поверхности, предсказание землетрясений.

Технология: линии электропередач, генератор переменного тока, электродвигатель, индукционная печь, радар, радиоприёмник, телевизор, антенна, телефон, СВЧ-печь, проекционный аппарат, волоконная оптика, солнечная батарея.

Наверх
На сайте используются файлы cookie. Продолжая использование сайта, вы соглашаетесь на обработку своих персональных данных. Подробности об обработке ваших данных — в политике конфиденциальности.

Функционал «Мастер заполнения» недоступен с мобильных устройств.
Пожалуйста, воспользуйтесь персональным компьютером для редактирования информации в «Мастере заполнения».